The recent trend to place monetary values on ecosystem services has led to studies on the economic importance of pollinators for agricultural crops. Several recent studies indicate regional, long-term pollinator declines, and economic consequences have been derived from declining pollination efficiencies. However, use of pollinator services as economic incentives for conservation must consider environmental factors such as drought, pests, and diseases, which can also limit yields. Moreover, “flower excess” is a well-known reproductive strategy of plants as insurance against unpredictable, external factors that limit reproduction. With three case studies on the importance of pollination levels for amounts of harvested fruits of three tropical crops (passion fruit in Brazil, coffee in Ecuador, and cacao in Indonesia) we illustrate how reproductive strategies and environmental stress can obscure initial benefits from improved pollination. By interpreting these results with findings from evolutionary sciences, agronomy, and studies on wild-plant populations, we argue that studies on economic benefits from pollinators should include the total of ecosystem processes that (1) lead to successful pollination and (2) mobilize nutrients and improve plant quality to the extent that crop yields indeed benefit from enhanced pollinator services. Conservation incentives that use quantifications of nature’s services to human welfare will benefit from approaches at the ecosystem level that take into account the broad spectrum of biological processes that limit or deliver the service.

Keywords: bet-hedging, carrying capacity, ecosystem services, flower surplus, fruit maturation, ovule fertilization, pollen production, pollinator decline

Received: October 20, 2006; Revised: February 15, 2007; Accepted: February 23, 2007

1 Present address: Natural History Museum Stuttgart, Rosenstein 1, Stuttgart D-70191 Germany. E-mail: boommarter@hotmail.com

2 Present address: Institute of Ecology, University of Jena, Friedrich-Schiller-University, Dornburger Strasse 159, Jena D-07743 Germany.

3 Present address: Department of Animal Ecology I, University of Bayreuth, Bayreuth D-95440 Germany.

4 Present address: School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8020 New Zealand.

Cited by

Online publication date: 26-Dec-2012.

CrossRef

Online publication date: 1-Dec-2012.

CrossRef

Online publication date: 1-Sep-2012.

CrossRef

Valerie E. Peters, C. Ronald Carroll. (2012) Temporal variation in coffee flowering may influence the effects of bee species richness
and abundance on coffee production. *Agroforestry Systems*

Online publication date: 14-Jan-2012.

Rachael Winfree, Brian J. Gross, Claire Kremen. (2011) Valuing pollination services to agriculture. *Ecological Economics*

Online publication date: 1-Sep-2011.

Online publication date: 1-Aug-2011.

Online publication date: 1-Jul-2011.

Online publication date: 20-Aug-2010.

Online publication date: 1-May-2010.

Online publication date: 1-Aug-2009.

Online publication date: 7-Oct-2008.

Online publication date: 1-Jun-2008.

Online publication date: 1-Apr-2008.

Abstract . Full Text . PDF (196 KB)

ESA Publications Office | 127 W. State Street | Suite 301 | Ithaca, NY 14850-5427 | phone 607-255-3221 | email esa_journals@cornell.edu

Frontiers Editorial Office | 1990 M Street, NW | Suite 700 | Washington, DC 20036 | phone 202-833-8773 | email frontiers@esa.org

ESA Headquarters | 1990 M Street, NW | Suite 700 | Washington, DC 20036 | phone 202-833-8773 | email esahq@esa.org

Copyright Ecological Society of America. All rights reserved.