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Improving tropical forest mapping using multi-date Landsat TM data
and pre-classification image smoothing

C. TOTTRUP

Institute of Geography, University of Copenhagen, Øster Voldgade 10,
DK-1350 Copenhagen K, Denmark; e-mail: ct@geogr.ku.dk

(Received 8 November 2001; in final form 15 May 2003 )

Abstract. The present study explores the possibility of using Landsat imagery
for mapping tropical forest types with relevance to forest ecosystem services. The
central part in the classification process is the use of multi-date image data and
pre-classification image smoothing. The study argues that multi-date imagery
contains information on phenological and canopy structural properties, and
shows how the use of multi-date imagery has a significant impact on
classification accuracy. Furthermore, the study shows the value of applying
small kernel smoothing filters to reduce in-class spectral variability and enhance
between-class spectral separability. Making use of these approaches and a
maximum likelihood algorithm, six tropical forest types were classified with an
overall accuracy of 90.94%, and with individual forest classes mapped with
accuracies above 75.19% (user’s accuracy) and above 74.17% (producer’s
accuracy).

1. Introduction

There are a number of ecosystem services related to the world’s tropical forests.

These services include the provision of food and raw materials (Lambin 1994),

protection against soil erosion, sedimentation and flooding (Douglas 1999), water

cycling and impacts on rainfall patterns (Koninck 1999), exceptional biological

diversity (Whitmore 1991) and carbon storage in regenerating tropical forests

(Foody et al. 1996). These forest ecosystem services vary with forest type and

consequently knowing the extent of the various forest types becomes important for

the effective management of the tropical forests. However, quantitative data on the

extent and variation of the tropical forest ecosystem are incomplete and sometimes

inaccurate. Often the tropical forests are inadequately mapped due to great survey

costs, which are a consequence of the large spatial extent and poor accessibility of

these areas. It has therefore been suggested that space-borne sensors have the

potential for delivering reliable estimates of the extent, quality and changes of the

tropical forests (Foody and Curran 1994). Still, many applications of remote

sensing use just one or only a few broad forest classes such as the Landsat

Pathfinder project (Chomentowski et al. 1994) and the Tropical Ecosystem

Environment Observation by Satellite (TREES) project (Achard et al. 2001). But

the broad categories mapped in these studies fail to deliver valuable and useful

information on the variation within the tropical forest environment. A better
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impression of the tropical forest environment and related ecosystem services could

be achieved with greater classification detail and the full potential of remote sensing

for distinguishing tropical forest types has still to be exploited (Hill and Foody

1994). Detecting subtle vegetation changes in diverse tropical forest environments

requires relatively high-resolution satellite sensor data and in this sense the Landsat
programme offers good value for money in terms of spatial and spectral resolution.

The overall objective of the present study is to support tropical forest management

by using satellite remote sensing to map tropical forest classes with relevance to

forest ecosystem services. In that respect the immediate objectives are to evaluate

the ability of the Landsat sensor to map tropical forest classes and to suggest some

classification approaches that may be routinely used.

2. Study area

The study area is located in the upper Ca river basin in the province of Nghe An

in north-central Vietnam, approximately 300 km south of Hanoi (figure 1). The Ca
river flows in a south-eastern direction from Laos into Vietnam and through Nghe

An province before it flows into the Bay of Tonkin.

The area is located in a monsoon zone with a cold and dry season from

November until March caused by the north-east monsoon and a hot and humid

season due to the south-west monsoon (locally called the Lao wind) blowing from

April to October. Average temperatures are 22–24‡C, with the highest temperatures

Figure 1. Location map of the Ca River basin (grey region) and the study area (hatching).
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reaching 40‡C in June, while the lowest temperatures can drop to 5‡C around

January. Annual precipitation in the upper Ca river basin is close to 1500 mm with

a mean humidity of around 80–85% (Cuc et al. 1999). Nghe An province has the

third largest forest cover in Vietnam although the distribution of forestland is
highly variable within the province as a whole. Forests have been destroyed

completely at lower altitudes, while deforestation has been less destructive in the

midland and mountain regions including the upper Ca river basin where around

40% of the area remains forested (Cuc et al. 1999). The dominant forest formation

is the broad-leafed evergreen and semi-deciduous tropical moist forest found within

the lowland and lower montane zone. Although not as abundant in the upper Ca

river basin, true deciduous forest might be found in smaller patches at lower

altitudes. Steep limestone formations often referred to as karst are scattered
throughout the study region, supporting a special forest environment mainly

composed of broad-leafed evergreen trees and shrubs. Bamboo is the natural

undergrowth invading abandoned croplands and rapidly growing back in forest

openings caused by dead falls or selective logging. Montane forest is found at

altitudes above 1200 m above sea level and this forest formation is characterized by

the absence of dominating trees and a canopy height typically not exceeding 10 m.

The main human activities with respect to the forest environment are traditional

shifting cultivation, farming by settled lowland migrants and logging practices. The
latter is seen both as high-volume commercial logging and low-volume selective

logging carried out by individuals or small groups (Tran et al. 2000, Tottrup 2002).

3. Ground data

Ground data were collected during two field trips in the spring of 2000. The

ground data were acquired at five main sites. The sites were selected to cover a

range of physical and human environments believed to support different forest

types. All together 118 samples were collected and the information collected at each

sample was geographical location, habitat, land cover, tree height and percentage
canopy cover. The information was obtained using a Garmin 12XL Global

Positioning System (GPS), compass, clinometer and measuring tape. As real time

acquisitions of Landsat Enhanced Thematic Mapper (ETM)z/Thematic Mapper

(TM) data could not be guaranteed, an important aspect of the ground

observations was to reveal whether the visited sites had undergone changes since

the latest known available Landsat TM images from 1998. Moreover, photos and

sketches were taken and drawn at most points. All information was recorded on a

check-sheet and after the fieldwork was completed a database was created referring
all coordinates to their respective attributes. Additionally ground data were

available from the European Commission supported programme ‘Social forestry

and nature conservation in Nghe An province’. These ground data were collected in

1997, 1999 and early 2000. Part of these data was used as support for the

classification process while the other part was used as independent reference data in

the accuracy assessment.

4. Methodology
Tropical forest mapping from satellite imagery is normally performed using

either supervised and/or unsupervised classification techniques. The spectral

complexity of tropical forest classes has further led to numerous suggestions for

procedures and techniques to improve classifications including for example

stratification by ecological zone (Thenkabail 1999, Helmer et al. 2000), topographic

Tropical forest mapping using Landsat TM data 719

D
ow

nl
oa

de
d 

by
 [

C
ol

m
ex

] 
at

 1
7:

21
 1

9 
M

ar
ch

 2
01

3 



normalization (Colby and Keating 1998), spatial filtering (Hill and Foody 1994),

image segmentation (Hill 1999), object-oriented classifications (Foody et al. 1996),

vegetation indices (Boyd et al. 1996, Helmer et al. 2000) and multi-temporal image

data (Lucas et al. 1993). However, no standardized classification approach has been

developed for tropical forest mapping as the approaches vary according to

objectives and scale of study, environmental settings and software abilities

(Thenkabail 1999). In the following it is suggested that pre-classification image

smoothing and the use of multi-date information has the potential for improving

tropical forest mapping as well as being routinely used, not the least, due to their

sound rationality and ease of implementation. Both methodologies have

individually produced promising results (e.g. Conese and Maselli 1991, Hill and

Foody 1994) and in the present study their individual and combined ability to

improve tropical forest mapping was evaluated using separability analyses,

standard measures of accuracy and Kappa analyses. In the following the logic

behind image smoothing and multi-date information are presented followed by a

brief presentation of the image processing steps.

4.1. Pre-classification image smoothing

Low spectral separability of tropical forest types has been observed in Landsat

imagery (e.g. Singh 1987, Salas and Brunner 1998). This has mainly been attributed

to the rapid regrowth, the constant high level of greenness and the density of the

vegetation canopy (Salas and Brunner 1998) and to the complex texture of the

reflectance patterns (Hill 1999). The textural complexity becomes especially evident

in higher resolution imagery where it has been suggested that for tropical forest

classes the in-class spectral difference is significant relative to the between-class

spectral variation (Thenkabail 1999, Hill 1999). However, the use of pre-

classification image smoothing could suppress the influence of in-class spectral

variance while enhancing the between-class spectral separability. A smoothing filter

reduces the in-class spectral variability by averaging the pixel values inside a

sizeable kernel moved throughout the image. The present study tested the above

logic by evaluating the effect of smoothing filters on forest class spectral

separability and classification accuracies. It is important to be aware that image

smoothing may also blur edges between forest and other land cover classes and thus

in heterogeneous landscapes only small sized kernels should be used (Hill 1999).

4.2. Multi-date information

Areas with complex topography and heterogeneous surfaces possess an extreme

challenge to land cover classifications based on remote sensing. However, multi-

date acquisitions are likely to enhance classification possibilities because they

supply spectral information related to changing phenological stages (Conese and

Maselli 1991) and canopy roughness (Foody and Curran 1994). Variability in

reflected energy with the geometry of illumination and observation might be a

valuable indicator of canopy roughness (Foody and Curran 1994). Land cover

classes are typically non-Lambertian, i.e. they display a class-specific angular

reflectance response which is related to surface roughness. Thus forest studies

combining spectral information from varying Sun angles could provide a unique

spectral response pattern related to canopy roughness. Also vegetation shows well

defined variations in spectral responses related to phenological cycles and the

acquisition of satellite imagery from different seasons is expected to greatly enhance
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the discrimination performance of the satellite imagery (Conese and Maselli 1991).

The present study investigated the above rationales by comparing single- and multi-

date classifications. The multi-date approach assumes that surfaces examined do

not vary in extension and distribution between acquisition dates. On the other

hand, it should also be evident that the acquisitions should not be too close in time

as the success of the multi-date approach depends on phenological changes as well

as Sun angle differences.

4.3. Satellite sensor data and image processing

Two near cloud-free Landsat TM images, from 15 May 1998 and 7 November

1998, were acquired and co-registered. Thirty-six ground control points were used

to rectify the November image to a UTM map projection (zone 48N, datum

WGS84) using a nearest neighbour resampling routine that maintained the original

30 m resolution. The second order polynomial transformation had an RMS error of

0.87 pixels. The May image was then co-registered to the November image using an

image-to-image registration and resampled with an estimated RMS error of

0.37 pixels. Clouds and cloud shadows were masked out using visual interpretation

and on-screen digitizing. All visible and infrared bands were available for the

analyses. However, the thermal infrared bands were excluded due to their lower

spatial resolution. Also the visible blue bands were excluded, as high minimum

histogram entries and low data depths suggested that these bands were affected by

atmospheric scattering and with only modest contribution to class separability.

Consequently, the feature selection resulted in the following datasets: two single-

date 5-band combinations and a multi-date 10-band combination. Each of the

feature sets was analysed in three different modes consisting of raw data, 363

smoothed data and 565 smoothed data. Training and reference data were

manually digitized using the ground truth information and various false colour

composites. Training classes were grouped according to major physiognomic and

structural properties and class separability was investigated using graphical displays

and statistical analyses. The statistical analyses were based on the Jeffries–Matusita

(JM) distance, which has an upper value of 1.414 (d2) indicating maximum

separability and a lower value of 0 indicating no separability at all (Jensen 1996).

Before the classification it was ensured that all training classes fulfilled the statistical

requirement of approximating a Gaussian distribution. Training area statistics were

extracted from each of the nine combinations of input bands and filtering modes

and used as input for nine individual maximum likelihood classifications. During

classifications all classes were set with equal a priori values and without any reject

fraction. To remove salt-and-pepper noise the resulting images were cleaned using a

363 kernel majority filter. In the final part of the study, the nine classification

results were compared using standard measures of accuracy and Kappa analyses.

The goal was to determine whether there was any statistical verification for using

pre-classification image smoothing and the more costly multi-date approach.

5. Results and discussion

5.1. Separability analysis

The separability of forest types defined by their major physiognomic properties

is seen in figure 2. It appeared that three forest types (evergreen shrub, bamboo and

deciduous forest) displayed a high degree of spectral separability. However, the

broad-leaf evergreen forest class had a spectral overlap with the karst forest class.

Tropical forest mapping using Landsat TM data 721

D
ow

nl
oa

de
d 

by
 [

C
ol

m
ex

] 
at

 1
7:

21
 1

9 
M

ar
ch

 2
01

3 



Still, the overlap was not considered serious as any classification error between

these classes could be considered minor, as the karst forest constitutes a special type

of broad-leaf evergreen forest. Instead it was explored whether it was possible to

subdivide the broad-leaf evergreen forest class. Human disturbance was expected to

have an impact on forest structural properties and therefore it was explored

whether the broad-leafed forest class could be divided by means of canopy closure

and tree height. It appeared that using only one of these structural properties did

not allow for sufficient separability of subclasses (figures 3 and 4). However, by

combining the structural properties it was possible to divide the broad-leafed

evergreen forest into a primary forest class and a human disturbed forest class

denoted by degraded forest. Degraded forest consisted of what in the field was

designated as either young secondary forest or open forest. The former represents

forest regrowth following clear-cutting activities such as logging and shifting

cultivation, while the opening of forest at larger scales is mainly attributed to

selective logging practices. For young secondary forest, canopy cover may exceed

50% but tree height is below 15 m. In contrast the open forest class is characterized

by an above 15 m tree height but a less than 50% canopy cover. As the two classes

were similar in both spectral characteristics and land use (human intervention) it

was found appropriate to merge them into a degraded forest class. A full

description of the identified forest classes can be found in table 1.

A multidimensional tabular representation of forest class spectral separability

using both raw and smoothed data is found in table 2. It appears that image

smoothing has the potential for increasing class separability. Although separability

could have been slightly improved further using a kernel of 767 pixels, it should be

stressed that a balance between training class separability and a possible real world

blurring must be considered. Especially, it is important to realize that training areas

are chosen because of their rather large homogeneous extension and therefore they

Figure 2. Ellipse scattergraph of training samples for forest physiognomic properties (note:
ellipses are one standard deviation from the mean).
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do not represent the true heterogeneity of the landscape. For that reason the kernel

of 565 pixels was chosen as the optimal filter.
The apparent success of image smoothing for enhancing the spectral recognition

pattern of tropical forest types is probably related to forest structural patterns. For

example, the spectral signature of degraded forest can appear as mature forest in

any given pixel, while in some pixels mature forest can appear as degraded forest.

Figure 3. Ellipse scattergraph of training samples for tree height of the broad-leaf evergreen
forest class (note: ellipses are one standard deviation from the mean).

Figure 4. Ellipse scattergraph of training samples for canopy closure of the broad-leaf
evergreen forest class (note: ellipses are one standard deviation from the mean).
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Table 1. Physiognomic and structural forest types within the upper Ca river basin in north-central Vietnam.

Class name Description Subclass Description

1. Primary forest Undisturbed broad-leaf evergreen and semi-deciduous
forest stands. They are characterized by a canopy
closure of more than 50% and tree height various
from 18 m to as high as 45zm. Although designated
primary forest this class includes areas that have been
exposed to low-volume selective logging as well as old
secondary forest (approximately w20 y).

Montane forest Elfin and pine forests found at altitudes
from 1200zm above mean sea level.

2. Karst forest Special forest type mainly found on the top and in
the cracks of steep limestone formations.

3. Deciduous forest True broad-leaf deciduous forest stands. Found below
approximately 800 m above mean sea level.

4. Degraded forest Forest areas with a considerable human disturbance.
These areas might include forest growing back from
clear-felling resulting from either shifting cultivation
or logging (secondary forest) or areas affected by
pronounced selective logging.

Open forest Broad-leafed evergreen and semi-deciduous
forest areas where selective logging has taken
place. Canopy closure is below 50% and tree
height rarely exceeds 20zm. Shrub and
bamboo are found in the openings followed
by selective logging.

Young secondary
forest

Forest growing back in clear-cuts resulting
either from agriculture or logging
(approximately v20 y). Canopy closure may
exceed 50% but tree height is less than 15 m.

5. Bamboo Areas dominated by bamboo. The term bamboo refers
to old, naturally occurring bamboo areas as well as to
second growth bamboo following clear felling. Finally
some bamboo areas are the result of nursery and
planting.

6. Shrub Areas dominated by evergreen shrub and bushes
reaching a height between 3–9 m. These areas are often
associated with fallow vegetation (approximately 2–5 y).
Some taller woody species might be interspersed.
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This also applies for other spectral similar classes such as degraded forest versus

bamboo and bamboo versus shrub. It follows that this would lead to classification

errors when analysing on a per pixel basis using raw data. However, these dissimilar

spectral pop-ups are moderated in the smoothing process where deviating spectral

values are replaced with an average value within a user-determined kernel.

5.2. Classification accuracy

The classification performances were evaluated using independent reference data

and standard measures of accuracy and Kappa analyses. A comparison of the

overall accuracy, Kappa agreement and Zeta statistics for all nine classifications are

found in table 3 while the resulting classification error matrix of the best achieved

classification is seen in table 4.

From table 3 it appears that all band combinations are significant at the 95%

confidence level, i.e. they fail the null-hypothesis that the classifications are no

better than a random assignment of pixels (Congalton 1991). Furthermore, the

table clearly displays the strength of the methodology with generally improved

accuracies when using image smoothing and a multi-date band combination. The

success of the multi-date approach can be understood as a function of: (1) a

sufficient time between image acquisitions that assured a different geometry of

illumination caused by significant Sun angle changes; (2) the satellite scenes being

acquired at different seasons and thus representing varying phenological stages. The

argument that image smoothing and multi-date imagery produces better results can

be further validated by using Kappa analyses to compare individual matrices two at

a time to determine whether they are significantly different (Congalton and Green

1998). A comparison of raw versus filtered data and of the single-date versus the

multi-date approach are found in table 5.

Table 2. Measures of Jeffries–Matistuta derived from raw and smoothed multi-date
Landsat TM data.

[0] [1] [2] [3] [4] [5]

(a) Raw data
[0] Primary forest – 0.888 1.362 0.876 1.213 1.307
[1] Karst – 1.341 0.916 1.205 1.279
[2] Deciduous forest – 1.340 1.359 1.343
[3] Degraded forest – 0.851 1.129
[4] Bamboo – 1.026
[5] Shrub –
(b) 363 smoothed data
[0] Primary forest – 1.051 1.410 0.931 1.308 1.365
[1] Karst – 1.413 1.106 1.362 1.368
[2] Deciduous forest – 1.411 1.413 1.409
[3] Degraded forest – 0.961 1.251
[4] Bamboo – 1.169
[5] Shrub –
(c) 565 smoothed data
[0] Primary forest – 1.159 1.414 1.035 1.354 1.390
[1] Karst – 1.414 1.186 1.393 1.398
[2] Deciduous forest – 1.414 1.414 1.414
[3] Degraded forest – 1.060 1.301
[4] Bamboo – 1.214
[5] Shrub –
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Table 4. Classification error matrix. Based on the maximum likelihood classification of a
565 smoothed multi-date Landsat TM dataset.

Classified

Reference data

[0] [1] [2] [3] [4] [5] [6]
Row
total

User’s
accuracy

(%)

[0] Primary forest 335 2 0 2 0 0 – 339 98.82
[1] Karst 0 142 0 0 0 0 – 142 100.00
[2] Deciduous forest 0 0 59 0 0 0 – 59 100.00
[3] Degraded forest 0 0 0 97 24 8 – 129 75.19
[4] Bamboo 0 0 0 10 89 4 – 103 86.41
[5] Shrub 0 0 0 5 7 101 – 113 89.38
[6] Other 0 0 5 10 0 5 – 20
Column total 335 144 64 124 120 118 – 905

Producer’s
accuracy (%)

100.00 98.61 92.19 78.23 74.17 85.59

Accurately classified pixels (along diagonal) 823
Total number of pixels used for reference 905
Overall classification accuracy 90.94%
Overall Kappa statistics 88.40%

Table 3. Overall accuracy measures, Kappa analysis results and test of significance for
individual maximum likelihood classifications.

Band combination Filter

Overall
accuracy

(%)

Kappa
statistic

(%) Variance
Z

statistic*

TM 2, 3, 4, 5 and 7 May 1998 None 59.39 46.90 0.0004208 22.9
TM 2, 3, 4, 5 and 7 Nov. 1998 None 70.84 60.70 0.0004385 29.0
TM multi-date 1998 None 79.57 72.56 0.0003292 40.0
TM 2, 3, 4, 5 and 7 May 1998 363 smoothed 71.66 62.59 0.0003827 32.0
TM 2, 3, 4, 5 and 7 Nov. 1998 363 smoothed 76.74 68.69 0.0003709 35.7
TM multi-date 1998 363 smoothed 85.83 81.09 0.0002453 51.8
TM 2, 3, 4, 5 and 7 May 1998 565 smoothed 79.34 72.30 0.0003472 38.8
TM 2, 3, 4, 5 and 7 Nov. 1998 565 smoothed 76.03 68.43 0.0003485 36.6
TM multi-date 1998 565 smoothed 90.94 88.40 0.0001745 66.1

*Zc~1.96 at the 95% confidence level. H0: K~0 is rejected when ZwZc.

Table 5. Kappa analysis results for the pairwise comparison of error matrices.

Pairwise comparison I Z statistic* Pairwise comparison II Z statistic*

Raw vs 565 smoothed
(May 1998)

9.1717 May 1998 vs November 1998 1.4686

Raw vs 565 smoothed
(November 1998)

2.7593 May 1998 vs Multi-date 1998 6.6048

Raw vs 565 smoothed
(Multi-date 1998)

6.5753 Nov. 1998 vs Multi-date 1998 8.3076

*Zc~1.96 at the 95% confidence level. H0: (K12K2)~0 is rejected when ZwZc.
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The figures in table 5 are consistent with the above arguments and show that it

is statistically significant to apply image smoothing and incorporate multi-date

imagery when mapping tropical forest types. Besides, it is noteworthy that there is a

statistical agreement between the two single-date approaches, i.e. classifications

based on either May or November imagery do not differ significantly. In figure 5

there is a presentation of the final forest and land cover map. Note that a number

of non-forest classes have been mapped as well. However, due to lack of

independent reference data the classification accuracy of the non-forest classes has

not been assessed. Still, with regard to the specific objective concerning the forest

classes, it is important to stress that classification errors induced by non-forest

classes on forest classes is very limited (cf. table 4).

6. Conclusion

Information on tropical forest quality is essential for the effective management

of forest resources since regarding the tropical forest as a homogeneous unit may

over- or underestimate the ecosystem services provided by the tropical forest. It is

therefore important to develop methodologies that can locate and quantify various

types of tropical forest. The use of remote sensing has been suggested as a suitable

and cost-efficient way to provide this information. The present study has

Figure 5. Forest and land cover map of the upper Ca River basin in north-central Vietnam.
The map is the result of a maximum likelihood classification of a 565 smoothed
multi-date Landsat TM dataset.
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demonstrated how Landsat TM data with simple classification approaches can be

used to map several tropical forest types. Forest types were identified using forest

physiognomic and forest structural properties and the potential for mapping such

forest types was evaluated using raw versus smoothed input data and single- versus
multi-date image information. The use of separability analyses showed how small

kernel pre-classification image smoothing effectively helped to reduce in-class

spectral variability while enhancing between-class spectral differences. The impact

on the classification was improved overall accuracies. This was further supported by

Kappa analysis comparisons, showing a significant improvement in classifications

based on smoothed input data relative to raw input data. Furthermore, the study

argued that multi-date imagery contains information on canopy structural

properties and phenological changes and has the potential to improve classification
accuracies. The multi-date approach was tested against two single-date classifica-

tions and the value of using multi-date information was evident in terms of a higher

overall classification accuracy and a statistical significant improvement in

classification results. The highest classification accuracy was achieved when using

both pre-classification image smoothing and multi-date imagery. Doing that, it was

possible to map six forest types with an overall accuracy of 90.94% and with

individual forest types mapped with accuracies above 75.19% (user’s accuracy) and

above 74.17% (producer’s accuracy). The simplicity and rationale of both pre-
classification image smoothing and multi-date imagery indicates that they have the

potential for being routinely applied in tropical forest mapping. However, in an

operational context, two aspects concerning the multi-date approach must be

considered. The first is the increased cost of using an additional satellite scene,

which could make the approach less attractive. However, the argument has lost

some significance as the new pricing policy followed by the launch of Landsat 7

now means that Landsat data can be obtained at very reasonable costs. Also, it can

be expected that the cost of remote sensing data will decrease in the future as the
number of instruments with Earth resource mapping capabilities increases.

Secondly, the main limitation to a multi-date approach is the possibility of

acquiring satellite scenes of adequate quality. The use of optical sensors in humid

regions is hampered by high occurrences of clouds and thus the acquisition of

several cloud-free satellite scenes at crucial times within a year can be difficult.

Nevertheless, when successfully applied, the prospect of the study has high

relevance for improved natural resource management as it gives an up-to-date

synoptic view of the state of the tropical forest with information related to forest
ecosystem services. The study, however, does indicate a number of recommenda-

tions for future research. For example, there is a need to elaborate methodologies

that can distinguish between various classes of degraded forest as each class has its

own economic, social and environmental impacts as well as its own management

implications. In that sense microwave backscatter measured by Synthetic Aperture

Radars (SAR) may have the potential to improve tropical forests mapping by

providing information on leaf and woody biomass as well as canopy roughness

(Foody and Curran 1994). Furthermore, it appears that the only practical solution
to cloud cover might be to increase the temporal resolution through a multiple

satellite sensor approach. This would enhance the possibility for acquiring cloud-

free imagery and thus assure a better continuality in tropical forest inventories

using satellite remote sensing. The latter is important as the dynamics of tropical

forest ecosystems should be investigated using satellite imagery with annual or near-

annual repeatings.
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