The Concept of Ecosystem Services Regarding Landscape Research: A Review

Anna Hermann
Department of Conservation Biology, Vegetation Ecology and Landscape Ecology,
Universität Wien, A-1030 Rennweg 14, Vienna, Austria
email: anna.hermann@univie.ac.at

Sabine Schleifer
Department of Conservation Biology, Vegetation Ecology and Landscape Ecology,
Universität Wien, A-1030 Rennweg 14, Vienna, Austria
email: a0402557@univie.ac.at

Thomas Wrbka
Department of Conservation Biology, Vegetation Ecology and Landscape Ecology,
Universität Wien, A-1030 Rennweg 14, Vienna, Austria
email: thomas.wrbka@univie.ac.at

Accepted on 21 February 2011
Published on 26 March 2011

Abstract

The awareness that natural and semi-natural ecosystems provide benefits to human society, which are of great economic, ecological and socio-cultural value, can be dated back to the mid-1960s and early 1970s. More recently, there has been an almost exponential growth in publications on the benefits of natural ecosystems to human society. However, despite the enhancing interest in ecosystem service research, still many open questions remain to fully integrate the ecosystem service concept in landscape research and decision making. The paper aims at providing the state-of-the-art of ecosystem service assessment regarding landscape research and to present a coherent knowledge base for further discussions. First the paper gives an overview of the different ways defining and classifying ecosystem services. Five selected typologies, very common in the literature are discussed in detail. The second main part of this review focuses on quantifying and mapping ecosystem services as well as on the different valuation approaches. As there are still a lot of challenges that have to be faced regarding quantifying, visualising as well as valuing ecosystem services the paper emphasizes the importance of further research, initiatives and projects to improve the implementation of the ecosystem service concept in environmental planning and management at all levels of decision making. To meet all these challenges research effort needs to be conducted side by side to understand underlying relationships and to improve ecological as well as socio-economic understanding.

Keywords: ecosystem services/functions, landscape services/functions, classifying, quantifying and mapping, valuation

This review is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivs 3.0 Germany License.
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Imprint / Terms of Use

Living Reviews in Landscape Research is a peer reviewed open access journal published by the Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany. ISSN 1863-7329.

This review is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivs 3.0 Germany License: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Because a Living Reviews article can evolve over time, we recommend to cite the article as follows:

The date given as <date> then uniquely identifies the version of the article you are referring to.

Article Revisions

Living Reviews supports two ways of keeping its articles up-to-date:

Fast-track revision A fast-track revision provides the author with the opportunity to add short notices of current research results, trends and developments, or important publications to the article. A fast-track revision is refereed by the responsible subject editor. If an article has undergone a fast-track revision, a summary of changes will be listed here.

Major update A major update will include substantial changes and additions and is subject to full external refereeing. It is published with a new publication number.

For detailed documentation of an article’s evolution, please refer to the history document of the article’s online version at http://www.livingreviews.org/lrlr-2011-1.
Contents

1 Introduction 5

2 Definitions of the different key terms 7

3 Classification systems and their different typologies 10
 3.1 Presentation of five selected classification systems 10
 3.2 Comparison of different typologies 13
 3.3 The problem of double counting 14
 3.4 Further developments of classification systems 14

4 Quantifying and mapping 15

5 Valuation 16
 5.1 The ecological, economic and socio-cultural value of ecosystems 16
 5.2 Different valuation methods 18

6 Discussion 22
 6.1 Definitions and classifications – a challenge 22
 6.2 Quantifying and mapping – their limitations 22
 6.3 Multifunctionality 23
 6.4 Different disciplines – advantages or hindrances? 23
 6.5 Valuation and the future generation 24

7 Acknowledgements 25

References 26

List of Tables

1 Comparison of five selected classification systems 11
1 Introduction

The concept of ecosystem services is seen as a promising approach communicating the links between ecosystems and human well-being (MEA, 2005). Although the term “ecosystem services” was primarily introduced by Ehrlich and Ehrlich (1981), the concept’s origin of the modern history dates back to the late 1960s and 1970s, highlighting the societal value on nature’s functions (King, 1966; Helliwell, 1969; Ehrlich and Ehrlich, 1970; Dee et al., 1973; Ehrlich et al., 1977; Bormann and Likens, 1979). In the 1970s and 1980s, it was already started to point out societal and economic dependence on natural assets in order to attract public interest on biodiversity conservation (e.g. Westman, 1977; de Groot, 1987). Important milestones in the mainstreaming of ecosystem services were on the one hand Daily’s book *Nature’s Services: Societal Dependence on Natural Ecosystems* (Daily, 1997) and on the other hand the paper by Costanza et al. (1997) on the value of global natural capital. The monetary figures presented in the last one resulted in a high impact on both science and policy making. Especially after the release of the Millenium Assessment (MEA, 2003), which focused on the benefits people derive directly and indirectly from ecosystems, the literature concerning ecosystem services has increased exponentially (Fisher et al., 2009). Since then, several authors and projects have been dealing with classifying, quantifying, mapping and valuing of ecosystem services in order to integrate the concept into decision making processes (Costanza et al., 1997; Wilson and Carpenter, 1999; Heal, 2000; de Groot et al., 2002; MEA, 2003; Turner et al., 2003; MEA, 2005; de Groot, 2006; Fisher et al., 2009; de Groot et al., 2010; Rounsevell et al., 2010).

As landscapes are considered to be multifunctional and are subject to a wide range of land uses, the concept of landscape functions or services, used as synonym to ecosystem services, raised much attention in the field of landscape ecology and landscape planning. The central notion in landscape development has always been that people are part of the landscape and that landscapes are changed for their benefit (Linehan and Gross, 1998; Antrop, 2001). Because landscape sciences focus on spatial pattern and scale, they can provide useful insights into how the spatial distribution of human activities influences important landscape processes and structures from which services are derived (Jones et al., 2008). Especially in Central and Eastern Europe both the analysis of landscape pattern and processes and the assessment of landscape functionality as a precondition for land use planning have a long tradition (Buchwald and Engelhardt, 1968). The idea of landscape function assessment (Bastian and Schreiber, 1994; Lee et al., 1999) traces back to the multifunctionality concept of forests and green spaces (Konkoly-Gyuró, in press). Whereas the term “natural territorial potentials” (Troll, 1950; Neef, 1966) was too abstract for practical landscape planning, the concept of landscape functions arose. Bastian and Schreiber (1994) for instance, developed a framework for the assessment of landscape functions to support sustainable land use management. Based on this concept, many studies dealing with different assessment methods, especially in the German speaking community, were carried out (Haber, 1979; Niemann, 1982; Bastian, 1997; Bastian and Schreiber, 1999; Leibowitz et al., 2000; Steinhardt and Volk, 2003; Palmer, 2004; Meyer and Grabau, 2008).

However, despite the great interest in this research topic there are still remaining challenges which need to be addressed to fully integrate the concept of ecosystem services into landscape planning and decision making (de Groot et al., 2010). The development of an integrative framework (Figure 1), which fully take the ecological, the economic as well as the socio-cultural values of landscapes into account, is still in process. Such a framework should be comprehensible, feasible and able to be applied at wide range of scales to different ecosystems or landscapes (Hein et al., 2006). In the literature many limitations, obstacles and open questions regarding this process are documented and discussed (de Groot et al., 2010). Because of the wide range of publications on the ecosystem service concept, different approaches to and implementations of the concept occur.

This paper aims at presenting the state-of-the-art of ecosystem service assessment regarding
landscape research. The target is to provide a coherent knowledge base contributing to the ongoing discussion process on finding solutions for integrating the concept of ecosystem services into landscape planning and decision making. The first sections of this paper address different key definitions used within the concept of ecosystem services and different classification systems of the services. The following sections illustrate various approaches and challenges of quantifying and mapping, different aspects of valuation methods and conclude with a discussion. Although the economic aspect within the concept of ecosystem services also remains as a main challenge, it is only marginally addressed in the present paper, because a review of economic valuation would go beyond the scope of this study. For more detail on this thematic, please refer to other reviews focusing on the economic approach (e.g. Peterson and Sorg, 1987; Pearce and Moran, 1994; Gómez-Baggethun et al., 2010).

Figure 1: Valuation framework integrating the ecosystem service concept into sustainable landscape planning and management; Taking into account the total landscape value (including ecological, socio-cultural and economical values) in decision making processes effects indirectly the provision of services (adopted from de Groot, 2006).
2 Definitions of the different key terms

If the ecosystem service concept is designed to provide an effective framework for natural resource management decisions, ecosystem services have to be defined and classified in a way that allows comparisons and trade-offs amongst the relevant set of potential benefits. A number of scientists have attempted to construct typologies of ecosystem services (e.g. Daily, 1999; de Groot, 2006; Boyd and Banzhaf, 2007). However, ambiguity in the definitions of key terms – such as ecosystem processes, functions, services and benefits – makes it difficult to develop a coherent decision framework (Wallace, 2007). For meaningful comparisons across time and space, clear definitions of the key terms are required (Boyd and Banzhaf, 2007; Wallace, 2007). However, according to Boyd and Banzhaf (2007) ecology and economics have failed to standardize the definition and measurement of ecosystem services. The following brief survey of definitions reveals multiple, competing meanings of the key terms used in the literature referring to the ecosystem service concept.

Ecosystem processes. According to the Elsevier’s Dictionary of Biology (Tirri et al., 1998) “process” is defined as “a series of events, reactions or operations, achieving a certain definite result”. Ecosystem processes are seen therefore as the complex interactions among biotic and abiotic elements of ecosystems, encompassing in broad terms material cycles and flow of energy (Lyons et al., 2005). Although this definition is widely accepted, scientists interpret and classify processes in different ways. Balmford et al. (2008), for example, distinguish between “Core Ecosystem Process” (e.g. production, decomposition, nutrient and water cycling), “Beneficial Ecosystem Process” (e.g. biomass production, pollination, biological control, habitat and waste assimilation), and “Benefits” (e.g. food, fresh water).

Ecosystem functions. De Groot (1992) defines ecosystem functions as “the capacity of natural processes and components to provide goods and services that satisfy human needs, directly or indirectly”. Functions therefore are the subset of biophysical structures and processes that provide services (de Groot et al., 2010). They can refer variably to the habitat, biological or system properties or processes of ecosystems (Costanza et al., 1997). Most authors agree that goods and services are generated by ecological functions (or processes) (e.g. Costanza et al., 1997; Daily, 1997; Farber et al., 2006). Jax (2005) notes that the term “ecosystem function” is considered as “capability”, but is often used more generally to refer to processes that operate within an ecosystem, like nutrient cycling or predation. Often the two terms ecosystem functions and ecosystem processes are commonly used as synonyms even within the same study (see Costanza et al., 1997).

Ecosystem services. Ecosystem services can be simply defined as a set of ecosystem functions that are useful to humans (Kremen, 2005). They are consequences of supporting processes acting at various temporal and spatial scales (Farber et al., 2006). These general definitions are widely accepted. However, when trying to classify services and applying this framework in decision making processes, several uncertainties are revealed. There exist various semantic classes of the term ecosystem services, depending on the specific goal or background (Fisher et al., 2009). According to Costanza and Folke (1997) ecosystem services “represent the benefits human populations derive, directly or indirectly, from ecosystem functions”. In Daily (1997) ecosystem services (also referred to as nature’s services) are the “conditions and processes”, as well as the “actual life-support functions”. Following Eichner and Tschirhart (2007), those biological resources are referred to as ecosystem services, which provide inputs into both production processes and consumers’ well-being. The definition in the MEA (2003), which has been widely taken-up in the international research and policy literature, highlights the strong relation of ecosystem services to the benefits people derive directly or indirectly from ecological systems. Based on the MEA approach, the TEEB
(The Economics of Ecosystems and Biodiversity) project defines ecosystem services as direct and indirect contributions of ecosystems to human well-being (TEEB, 2010).

Boyd and Banzhaf (2007) provide an alternative approach. In their definition, ecosystem services are ecological components (including ecological structure) directly consumed or enjoyed to produce human well-being. Thus indirect processes and functions are not ecosystem services, but intermediate ecological components. For instance, recreational angling is seen as a benefit with multiple inputs. Whereas the water body and the target fish population are final services, the food web and water purification land uses on which the fish population depends, are intermediate components, because they are not directly related to the benefit (Figure 2).

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Final Services</th>
<th>Intermediate Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreational angling</td>
<td>The water body</td>
<td>The water body's quality</td>
</tr>
<tr>
<td></td>
<td>The fish population</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The riparian forest</td>
<td></td>
</tr>
<tr>
<td>Drinking water</td>
<td>The water body's quality</td>
<td>Wetlands, natural riparian land cover</td>
</tr>
</tbody>
</table>

Figure 2: Final Services vs. Intermediate Components regarding the benefits “recreational angling and drinking water”; Whereas Intermediate Components are indirect processes and functions, Final Services are directly consumed or enjoyed to produce human well-being (after Boyd and Banzhaf, 2007).

In contrast to the definition above, Fisher et al. (2009) suggest that ecosystem services are “the aspects of ecosystems utilized (actively or passively) to produce human well-being”. Therefore services encompass ecosystem organization and structure as well as process and/or functions if they are consumed by humanity either directly or indirectly (Figure 3).

<table>
<thead>
<tr>
<th>Intermediate Services</th>
<th>Final Services</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollination</td>
<td>Clean water provision</td>
<td>Drinking water, domestic use water</td>
</tr>
<tr>
<td>Primary productivity</td>
<td>Storm protection</td>
<td>Property protection, decreased livelihood vulnerability</td>
</tr>
<tr>
<td>Water regulation</td>
<td>Constant stream flow</td>
<td>Recreation, water for irrigation, water for hydroelectric power</td>
</tr>
<tr>
<td>Soil formation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Conceptual relationship between Intermediate and Final Services; Structure and Processes become Intermediate Services if there are humans that benefit from them. Interactions among several Intermediate Services produce Final Services such as “clean water provision” and “storm protection” (after Fisher et al., 2009).
Landscape services vs. ecosystem services. Another approach is to define functions and services at landscape scale to integrate the concept into land management decisions. The awareness that landscapes provide a multitude of functions and are subject to many possible land uses, gives rise to increasing research interest on the linkages between land use and land(sape) functions (see Bakker and Veldkamp, 2008; Pérez-Soba et al., 2008; Verburg et al., 2009). Therefore, recently the terms “landscape function as well as landscape service” have become more important in the literature (Bastian and Schreiber, 1999; de Groot et al., 2010; Willemen et al., 2010). As “landscapes” (contrary to “ecosystem”) may be more attractive to non-ecological scientific disciplines and may be associated with people’s local environment, the term “landscape services” is preferred as a specification (rather than an alternative) of ecosystem services. In addition, the terms “environmental” and “green” services are used in some articles (Termorshuizen and Opdam, 2009).

Within this present paper landscape functions and services are used as a synonym to ecosystem functions and services. As the debate on the definitions is still going on and several authors have different interpretations and preferences, we don’t follow specific definitions of the key terms in order to assure the provision of an overview.

Benefits. A benefit is something that directly impacts on the well-being of people (Fisher and Turner, 2008). Well-being is declared as the opposite end of a continuum from poverty, which has been defined as a “pronounced deprivation in well-being” (MEA, 2005). As well-being is dependent on one’s situation, cultural and ecological circumstances, benefits are spatially explicit (Boyd and Banzhaf, 2007). Resources of well-being encompasses factors like aesthetic, enjoyment, various forms of recreation, maintenance of human health, physical damage avoidance, and subsistence of food (Boyd and Banzhaf, 2007). Defined this way, benefits can be seen as the link between human welfare and ecosystems, on which theoretically an economic value can be put on. The benefits humans gain from ecosystems are derived from services (Fisher and Turner, 2008). As mentioned above, the MEA (2003) and also other scientists (e.g. Costanza et al., 1997; Wallace, 2007) consider services and benefits to be the same.

Recently, another scientific discourse has suggested that human well-being is not only dependent on nature, but also on other landscape elements, which have therefore to be also taken into account (Carlisle et al., 2009). Especially, in affluent societies well-being can be understood as socio-cultural constructions of modernity which comply with the demands of a capitalist economic system (Eckersley, 2005). A multidisciplinary and culturally informed focus on well-being is thus necessary to be able to realise that certain aspects of “modern life” affect the physical environment on which humanity depends.

Conceptual relationship among the “key terms”. Haines-Young and Potschin (2010) provide a valuation framework for linking ecosystems to human well-being, which has been used in several projects, for instance, the TEEB project (TEEB, 2010) (Figure 4). The proposed diagram makes a distinction between ecological processes and functions as well as the provided services and the outputs considered for humans as benefits. However, in the real world the relationship is not as simple and linear as illustrated in the diagram. Although the general structure of the suggested framework is widely agreed upon, the distinction between the terms “function”, “service” and “benefit” is still under discussion (de Groot et al., 2010). Fisher et al. (2009), for example, propose a different conceptual relationship between the key terms (Figure 3). It shows how joint products (benefits) can stem from individual services. Intermediate services are based on complex interactions between ecosystem structure and processes and lead to final services, which provide human welfare benefits.
3 Classification systems and their different typologies

3.1 Presentation of five selected classification systems

Although in the ecological literature, the key terms “ecosystem process”, “ecosystem function”, “ecosystem service” and “benefit” have been subject to various and sometimes contradictory interpretations, a wide range of authors have attempted to provide a systematic typology and comprehensive framework for integrated assessment and valuation of ecosystem goods and services (see Daily, 1997; de Groot et al., 2002; MEA, 2005; de Groot, 2006; Boyd and Banzhaf, 2007; Fisher and Turner, 2008). However, because of the dynamic and complexity of ecosystems a single, consistent classification typology is difficult to develop (Costanza, 2008). There are many useful ways to classify ecosystem goods and services dependent on the different purposes of use.

Since a pluralism of typologies exists, we only illustrate some selected examples, which demonstrate different approaches and developments to classify ecosystem functions and services. Five different classification systems are presented, which are applied in many assessments and are used often as basis for further classification developments (Table 1). We have selected studies, which have shaped and differentiated the ecosystem service research community from the beginning (Costanza et al., 1997; Daily, 1999; MEA, 2003) as well as typologies aiming at integrating the concept of ecosystem services into landscape planning and management within a European context (Bastian and Schreiber, 1999; de Groot et al., 2010). In addition, two further classification approaches are presented, which show examples for further developments and adaption of the current typologies in the literature for regional as well as international integrated landscape planning projects.
Table 1: Comparison of five selected classification systems. Different typologies are presented, which are applied in many assessments and are often used as basis for further classification developments (Costanza et al., 1997; Daily, 1999; MEA, 2003; de Groot et al., 2010; Bastian and Schreiber, 1999).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>food production (e.g. fish, game, fruits)</td>
<td>production of goods</td>
<td>provisioning services</td>
<td>provisioning services</td>
<td>production (economic function)</td>
</tr>
<tr>
<td>raw materials</td>
<td>food</td>
<td>food</td>
<td>food</td>
<td>renewable resources (herbal and animal biomass) / non-renewable resources (mineral raw materials and fossil fuel)</td>
</tr>
<tr>
<td>durable materials (natural fiber, timber)</td>
<td>fibre</td>
<td>fibre, fuel, other raw materials</td>
<td>bio-chemical products and medicinal resources</td>
<td></td>
</tr>
<tr>
<td>energy (biomass fuels)</td>
<td>biomass fuels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industrial products</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pharmaceuticals</td>
<td>bio-chemicals, natural medicines, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>genetic resources</td>
<td>genetic resources</td>
<td>genetic resources</td>
<td>genetic materials</td>
<td></td>
</tr>
<tr>
<td>water supply</td>
<td>–</td>
<td>fresh water</td>
<td>water</td>
<td>available renewable resource: water</td>
</tr>
<tr>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gas regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>water regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>waste treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erosion control and sediment retention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pollination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disturbance regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>climate regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>biological control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regeneration processes</th>
<th>Regulation services</th>
<th>Regulation services</th>
<th>Regulation (ecological function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas regulation</td>
<td>air quality regulation</td>
<td>air quality regulation</td>
<td></td>
</tr>
<tr>
<td>water regulation</td>
<td>cycling and filtration processes</td>
<td>water regulation</td>
<td>water regulation</td>
</tr>
<tr>
<td>waste treatment</td>
<td>water treatment and waste treatment</td>
<td>waste treatment</td>
<td></td>
</tr>
<tr>
<td>erosion control and sediment retention</td>
<td>erosion regulation</td>
<td>erosion protection</td>
<td></td>
</tr>
<tr>
<td>pollination</td>
<td>translocation processes (dispersal of seeds, pollination)</td>
<td>pollination</td>
<td>pollination</td>
</tr>
<tr>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilizing processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disturbance regulation</td>
<td>regulation of hydrological cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>climate regulation</td>
<td>moderation of weather extremes</td>
<td>climate regulation</td>
<td>climate regulation</td>
</tr>
<tr>
<td>biological control</td>
<td>control of pest species</td>
<td>human disease regulation</td>
<td>biological regulation</td>
</tr>
<tr>
<td></td>
<td>compensation of one species for another under varying conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.livingreviews.org/lrlr-2011-1
Table 1 – Continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>Supporting services</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>nutrient cycling</td>
<td>–</td>
<td>nutrient cycling</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>soil formation</td>
<td>–</td>
<td>soil formation and retention</td>
<td>soil formation and regeneration</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>photosynthesis</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>primary production</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>water cycling</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Habitat or supporting services</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>gene pool protection</td>
<td>–</td>
</tr>
<tr>
<td>refugia</td>
<td>–</td>
<td>provision of habitat</td>
<td>nursery habitat</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>Life-fulfilling functions</td>
<td>Cultural services</td>
<td>Cultural & amenity</td>
<td>Habitat (social function)</td>
</tr>
<tr>
<td>recreation</td>
<td>–</td>
<td>recreation and eco-tourism</td>
<td>recreation and tourism</td>
<td>recreational function</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>human ecological function (e.g. filter- and buffer functions)</td>
</tr>
<tr>
<td>–</td>
<td>cultural heritage and diversity, sense of place</td>
<td>cultural heritage and identity</td>
<td>–</td>
<td>psychological function (aesthetic, ethic)</td>
</tr>
<tr>
<td>aesthetic beauty</td>
<td>aesthetic values</td>
<td>aesthetic</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>cultural, intellectual and spiritual inspiration</td>
<td>inspiration</td>
<td>inspiration for culture art and design</td>
<td>–</td>
<td>information function (science, education)</td>
</tr>
<tr>
<td>–</td>
<td>educational values</td>
<td>education & science</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>scientific discovery</td>
<td>knowledge systems</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>serenity</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>existence value</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>Preservation of options</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>maintenance of the ecological components and systems needed for future supply</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Costanza et al. (1997) tried to estimate the current economic value of renewable ecosystem services for 16 biomes, based on published studies and a few original calculations. For the purposes of this analysis the selected ecosystem services were categorised into 17 major groups. According to Costanza et al. (1997) ecosystem services represent the benefits humans derive, directly or indirectly, from ecosystem functions. Some ecosystem services are the product of more than one function, and one single function can contribute to two or more services. The classified ecosystem services represent the basis for further studies (e.g. de Groot et al., 2002; MEA, 2005; de Groot, 2006).

According to Daily (1999) natural ecosystems and their related biodiversity are seen as capital assets that will yield a wide range of life-supporting goods and services over time. Benefits, which derive from ecosystems, will therefore enhance human welfare. In order to support sustain-

Using the definition of (Costanza et al., 1997) [see Section 2 on definitions], the Millennium Ecosystem Assessment (MEA, 2003) provides a simple typology of services that has been widely taken-up in the international research and policy literature. Four broad types of service are suggested: “Provisioning services”, “Regulating services”, “Cultural services” and “Supporting services”. This classification is understandably not meant to fit all purposes, which has been pointed out for contexts regarding environmental accounting, landscape management and valuation, for which alternative classifications have been proposed (e.g. Boyd and Banzhaf, 2007; Wallace, 2007; Fisher and Turner, 2008).

Following de Groot et al. (2010) ecosystem functions are intermediate between processes and services and can therefore be defined as the “capacity of ecosystems to provide goods and services that satisfy human needs, directly and indirectly (de Groot, 1992). The provided typology is mainly based on the MEA (2003) and de Groot (2006). Four broad types of services are distinguished: “provisioning services”, “regulating services”, “habitat or supporting services” and “cultural and amenity services”. This classification concept was established aiming at integrating the concept of ecosystem services and values into landscape planning, management and decision making (de Groot et al., 2010).

Bastian and Schreiber (1999), that are well known in the German speaking community base their classification approach on a long lasted research history in landscape functioning and management. The so-called landscape functions are divided into three groups: “production functions” (economic functions), “regulation functions” (ecological functions) and “habitat function” (social function). Each group is again classified into main-functions and sub-functions so that the cause and effect chains and interactions between land-use demand on the one hand and landscape structure on the other hand are observable (Bastian, 1991, 1997; Bastian and Schreiber, 1999).

3.2 Comparison of different typologies

Whereas Costanza et al. (1997), the MEA (2005), and de Groot et al. (2010) focus on ecosystem services, Bastian and Schreiber (1999) refer to landscape functions (Table 1). Daily (1999), in comparison to them, includes in her classification both goods, processes and functions.

The typology of the ecosystem goods, services and functions is among these five broadly the same (except for the services of Costanza et al. (1997), which are often used as the basis for further developments). The groups “provisioning services”, “production of goods” as well as “production function” represent the presence of a large variety of living biomass, which provides many goods for human consumption e.g. food, raw materials and genetic material. “Regulation” or “regeneration processes” relate to the capacity of ecosystems to regulate essential ecological processes and life support systems. Whereas Daily separates the group “stabilizing processes” from “regeneration processes”, the MEA introduces the group “supporting services”. In contrast to the others, de Groot et al. (2010) include in their system the group “habitat or supporting” services, which are limited to two services (gene pool protection and nursery habitat). Thereby it is stressed that ecosystems provide refuge and reproduction-habitat that support ecological balance and evolutionary processes. Bastian and Schreiber also include “habitat function” but in the terms of social functions, that can be compared with the “cultural services” and “life-fulfilling functions” of the other authors. Although the typologies of these selected classification systems seem to be similar, the allocation of the services is varying, due to the different definitions of ecosystem goods, services, processes and functions and due to the different purposes of the assessments.
3.3 The problem of double counting

According to Wallace (2007), most of the proposed classification systems confuse ends with means. It should probably be distinguished between the benefit people enjoy and the mechanisms that give rise to that benefit. Assessed against these properties, any classification system containing both ecosystem processes and the outcomes of those processes within the same set will produce redundancy (Wallace, 2008). The fact that different ecosystem functions can deliver similar or equal services may lead to double counting in the assessment of the total value of ecosystems. Particularly, the regulation services are often still included in other services (Hein et al., 2006). For instance, “pollination”, which is among others important for the maintenance of fruit production, is already included in the service “production of food”. Therefore, Hein et al. (2006) propose to include only regulation services if they provide a direct benefit to people living in the area or/and if they have an impact outside the ecosystem of consideration. Costanza et al. (1997) suggest establishing a general equilibrium framework that could directly incorporate the interdependence between ecosystems functions and services. Another approach to avoid double counting is distinguishing between final and intermediate goods, when valuating the total value (see Boyd and Banzhaf, 2007). Müller et al. (2008) e.g. reorganized the MEA classification so that provisioning and cultural services are merged into a new category, final services, and the supporting and regulating services are melded into the category intermediary services. The reason for this is that both the cultural and provisioning services are affecting human well-being directly, whereas the two others are doing that only indirectly.

The TEEB project, which is mainly based on the MEA classification, shifted “supporting services” such as nutrient cycling and food-chain dynamics to ecological processes. The “habitat services”, instead, has been identified as a separate category to stress the importance of ecosystems to provide habitat for migratory species and gene-pool “protectors” (TEEB, 2010).

3.4 Further developments of classification systems

There exists a wide range of other useful ways to classify ecosystem functions, goods and services, like the suggestions from Costanza (2008) to classify by “spatial characteristics” or by the “excludability/rivalness” status of ecosystem services. The following presented classification systems demonstrate examples how the concept of ecosystem services can be applied to advanced international sustainability impact assessment projects as well as a comprehensive framework for analysing landscape functions in a coherent system.

The Integrated Project SENSOR (Helming et al., 2008) aimed at developing ex ante Sustainability Impact Assessment Tools to support decision making on policies related to multifunctional land use in European regions and abroad. In the course of this project the concept of Land Use Functions (LUFs) (Pérez-Soba et al., 2008), which are defined by the different land uses as the private and public goods and services, was developed. These functions include the most relevant economic, environmental and societal aspects of a region. Each LUF is characterised by a set of key indicators that assess the “impact issues” defined in the EU Impact Assessment Guidelines (European Commission, 2005). Nine LUFs were defined: The societal LUFs include “provision of work”, “human health” as well as “recreation and cultural functions”. Whereas the economic LUFs encompass “residential and land independent production”, “land-based production” and “transport functions”, the environmental LUFs cover “provision of abiotic resources”, “support and provision of biotic resources” and “maintenance of ecosystem processes”.

In comparison to other current classification systems a wide range of functions has been aggregated to three main function groups each again divided into three LUFs. On the one hand such a slim framework demonstrates a comprehensible communication tool to stakeholders, however on the other hand some loss of information has to be accepted. Great emphasis had put on reaching a balance between the main function groups within the assessments. However, this emerged very
difficult as the assessments of the functions groups societal, economic and environmental are based on different methods as well as within different spatial scales.

Recently a classification based on the Land Use Function concept has been provided including two main groups, namely the active and passive landscape functions (Konkoly-Gyuró, in press). Whereas the passive functions are divided into “regulating and life sustaining functions” of the natural systems (environmental regulation, habitat protection, biomass generation) and the “potentials” (biomass, row material production and provision of territory for the different land uses and provision of information and aesthetics), the active functions are the services provided by human activities and artificial territories (settlements, infrastructure networks, recreation- and agricultural surfaces etc.). Considering the core idea of this concept, namely focusing on natural as well as human introduced landscape functions, it can be concluded that the benefits derived from non-natural landscapes transformed by human activities have also be taken into account into decision making. This coincides with the recently emerged approach that well-being can be understood as socio-cultural constructions of modernity, which often comply with the economic system (Eckersley, 2005). However, it is questionable if human transformed landscape functions are equally important as functions derived from natural ecosystems.

4 Quantifying and mapping

Dependent on data availability and spatial and temporal scales of assessments, different methods are available for quantifying and mapping landscape functions/services. For assessments at global level as well as for rapid assessments, landscape functions and services can be determined directly by land cover or ecosystems using general assumptions from literature reviews. These methods are often applied when the economic value of the area is interesting (e.g. Naidoo and Ricketts, 2006; Troy and Wilson, 2006). However, a proper presentation of landscape functions/services would require also additional data beyond land cover observations. For example, the recreational function of a landscape is not only defined by the land cover of a specific location (e.g. natural area) but depends also on accessibility properties (e.g. distance to roads) and characteristics of the surrounding landscape (de Groot et al., 2010). But in many cases this is only achievable at local or at least regional levels, because of data availability.

Kienast et al. (2009) present a framework for a spatially explicit landscape functions assessment at European scale, linking land characteristics with a high number of landscape functions. However, the assessments are often primarily based on area measurements and only marginally on measurements of quality (e.g. land use diversity, forest structure).

At regional or local scale a more data-driven method can be used. Function and service data are originated mainly from field observations, including census data, spatial policy documents and biophysical data. Willemen et al. (2008) present a methodological framework to quantify landscape functions and to make their spatial variability explicit. They distinguish three different methods depending on the measurable function: (1) linking landscape functions to land cover or spatial policy data, (2) empirical predictions using spatial indicators and (3) decision rules based on literature reviews (Willemen et al., 2008). Whereas for some functions the exact location can be directly observed from the land-cover (e.g. wood for timber production), other functions such as recreation cannot be directly observed or only partially delineated and thus have to be empirically assessed based on landscape indicator analyses. If there does not exist any direct referenced information on the function’s location (e.g. leisure cycling), we have to rely on landscape data based on expert knowledge, literature reviews or process models.

A lot of studies dealt with these challenges aiming at providing spatial datasets to map landscape functions (e.g. Chan et al., 2006; Haines-Young et al., 2006; Gimona and Van der Horst, 2007; Egoh et al., 2008; Meyer and Grabauam, 2008). However, by doing the analysis major prob-
lems encountered. Finding appropriate indicators related to the specific service providing unit and exploring how functions and services are correlated with different landscape scenarios are still unresolved questions. To investigate the capacity of landscapes to provide services, landscape complexity and configuration analysis have to be addressed. Aspects such as size, form, and the border length between neighbouring land use types as well as the spatial connectivity of landscape units have to be taken into account. However, current landscape service indicators are still limited by insufficient data and an overall low ability to convey information (Layke, 2009).

Some indicators available are inadequate in characterizing the diversity and complexity of the services provided by landscape functions, especially concerning regulation as well as cultural services, which occur at various spatial scales. Ecosystems are complex, interrelated systems, in which processes take place over a range of spatial and temporal scales (Tansley, 1935) varying from competition between individual plants at plot level, via meso-scale processes such as fire and insect outbreaks, to climatic and geomorphologic processes at largest spatial and temporal scales (Clark et al., 1979; Holling et al., 2002). As service supply is dependent on ecosystem processes and functions, it may occur at different scales. Some services are even relevant at more than one scale. For instance regulation services can occur both at global scale (climate regulation) and plot-scale (biological nitrogen fixation) (de Groot, 1992). Also pressures on ecosystem services can have effects at different scales. In general physical processes on small scales are often driven by the impact on long period phenomena at large scales (climate patterns, hurricanes, fires) (Limburg et al., 2002). However, large scale processes are also strongly influenced by smaller scale occurrences, for example, microbes respire enough CO₂ to keep many lakes and rivers supersaturated (Levin, 1992; del Giorgio et al., 1997). Hence, for the analyses of the dynamics of ecosystem service supply it is very important to consider the drivers and processes at scales relevant for ecosystem service generation.

In addition, relevant to the time frame, ecosystems can act as service provider or suppressor (Martin and Blossey, 2009). For example, wetlands dominated by Phragmites australis can act as source and sink for greenhouse gases, depending on time scale (Brix et al., 2001). The species assimilates atmospheric carbon dioxide through photosynthesis and through sequestration of organic matter produced in wetland soils. But it also emits methane into the atmosphere in a two stage process (Beckett et al., 2001). Therefore, before an ecosystem can be seen as a service supplier, a time frame has to be defined for evaluation.

5 Valuation

5.1 The ecological, economic and socio-cultural value of ecosystems

Once the multifunctionality of landscapes and their services are identified, questions arise, like: How can we measure (value) the importance of these services, to get a basis for our decision making? How robust are the estimated values of ecosystem services? To answer these questions we have to address the terms “value” and “valuation”, which have different meanings in different disciplines:

Natural sciences. Most ecologists and other natural scientists would avoid to use the term “value”, except perhaps in its common usage as a reference to the magnitude of a number – e.g. “the value of a parameter” (Farber et al., 2002), because ecosystems are seen to have an “intrinsic value”, which cannot be measured (Callicott, 1989). Nevertheless, some concepts of value are important in the natural sciences, and are commonly used to talk about causal relationships between different parts of a system: For example, referring to particular tree species and their value in controlling soil erosion in a high slope area, or to the value of fires in recycling nutrients in a forest (Farber et al., 2002). Therefore, the ecological importance (value) of ecosystems is determined.
by ecological criteria such as integrity, resilience and resistance (health). Ecological measures of value encompass parameters such as complexity, diversity and rarity (de Groot et al., 2003). To integrate ecological values into landscape planning sustainable use-levels are often applied. Batabyal et al. (2003), for instance, propose to use a scarcity value which is described by ecological thresholds, as a measure for sustainable managing. Their study presents a formal model that explicitly analyses the connections between thresholds and ecosystem management (Batabyal et al., 2003). The application of ecological modelling allows assessing the impact of environmental change and biodiversity loss on combined ecosystem services (Metzger et al., 2006; Egoh et al., 2008; Nelson et al., 2009).

Another approach to valuate the impact of land use change on ecosystem services is the application of reference systems, e.g. the potential natural vegetation (PNV) (Tüxen, 1956). Tüxen emphasized the big value of PNV-maps for different purposes in landscape planning and nature conservation, particularly for forestry, agriculture and landscape management. However, maps of the potential natural vegetation are less useful for purposes of detailed planning on larger scales in cultural landscapes, where the reconstruction of the PNV has only hypothetical character (Zerbe, 1998).

Economy. In the economic context, the total value (TEV) of ecosystem services encompasses use values and non-use values. Use values include direct (consumptive and non-consumptive values) as well as indirect use values. Whereas direct consumptive values refer to ecosystem services like fish, fruits and some cultural services, direct non consumptive services refer for example to enjoyment of scenery or eco-tourism. Indirect use values relate to regulation services like pollination of crops, storm protection or flood prevention. The non-use values consider, for instance the importance people place on protecting nature for future use (option value) or because of ethical principles (bequest, existence and insurance value) (for more details see Pearce, 1991; Torras, 2000; TEEB, 2010).

To provide a common metric in which to express the benefits of diverse ecosystem services, the economic approach usually uses money as a general measurement unit. There exist many ways to translate the economic values into monetary terms. For details on valuation techniques see Dixon and Hufschmidt (1986); Peterson and Sorg (1987); Pearce and Turner (1990); Tietenberg (1992); Pearce and Moran (1994); Heal (2000); Turner et al. (2003) and the TEEB report (TEEB, 2010). Chee (2004), for instance, shows the principal methods for the monetary valuation and points out the pro and contra of these methods.

In general, there is a distinction between direct market valuation, indirect market valuation, contingent valuation and group valuation, each with its own associated measurement issues (de Groot et al., 2002; MEA, 2003). Whereas services, which are directly linked to the market, can be easily valued according to their market price, non-market services are often valued using the “willingness to pay” or “willingness to accept” compensation methods encompassing “avoiding cost”, “replacement cost”, “factor income”, “travel cost” and “hedonic pricing” (de Groot et al., 2002). In the last years “contingent valuation” and “group valuation”, which are based on an open public deliberation, have also become appreciate techniques for estimating values (Jacobs, 1997; Sagoff, 1998).

All these different methods have gained increasing attention concerning ecosystem service valuation and have become an applicable tool for estimating service values. Following proponents of monetary valuation techniques, these economic methods are able to illustrate the distribution of benefits, improve understanding of problems and trade-offs and can thus facilitate decision making (e.g. Aylward and Barbier, 1992; Salzmann et al., 2001; de Groot, 2006). However, economic valuation of ecosystem services has reached its limits (e.g. Heal, 2000; Farber et al., 2002; Wilson and Howarth, 2002; Chee, 2004; Hein et al., 2006). Although it may encourage management options, decisions makers have to take into account the overall objectives and limitations of economic valuation techniques (see Ludwig, 2000).
Socio-cultural sciences. Besides the ecological and the economical importance of ecosystems, natural and especially cultural landscapes offer a wide range of historical, national, ethical, religious and spiritual benefits, the so called socio-cultural values (MEA, 2003). However, although such cultural services play an essential part in the enhancement of human welfare, they are marginally present in the current research activities (Benayas et al., 2009). This is considered as an increasing problem when the concept of ecosystem services is applied in cultural landscapes with typically long-lasting land use history, dynamic interactions of humans and nature, cultural patterns, and people’s identities and values. Therefore, the ecosystem service approach should be expanded by the “cultural landscape paradigm”, which includes humans as integral parts of landscapes, whereas other models in the present debate tend to see humans as impartial observers, as external drivers on ecosystems or as beneficiaries of environmental services (Matthews and Selman, 2006). Therefore, landscapes are seen as “social-ecological systems”, in which social, economic and environmental components are closely interwoven (Berkes et al., 2003).

While conceptual and methodological developments in monetary valuation have aimed at covering a wide range of values, including intangible ones, it can be stated that socio-cultural values cannot be fully evaluated by economic valuation techniques. A psycho-cultural perspective of valuation would strongly suggest a transdisciplinary dialogue (Rist et al., 2004), aiming at cooperation between natural and social sciences research through debates on environmental ethics, tools and methods of social inquiry and socio-economic development as well as empowerment (Kumar and Kumar, 2008).

Since the last two decades many publications have dealt with different interpretations and implementations of the term “value” in the context of ecosystem services (e.g. Costanza et al., 1997; Bishop, J.T., ed., 1999; Odum and Odum, 2000; Howarth and Farber, 2002; Chee, 2004; Farber et al., 2006; Kumar and Kumar, 2008), which shows the big interest and importance of this topic. Following Costanza (2000) valuation is a basic need of human beings. Any choice and trade-offs between competing alternatives imply valuations, which are simply the relative weights given to the various aspects of decisions. Therefore, valuation ultimately depends on the specific goal or objective of an item (Costanza, 2000). For a long time the main focus has been on the utilitarian approach. However, individual utility maximization has become constrained when sustainability and social equity were also included as goals into the valuation concept (Costanza and Folke, 1997). According to the MEA and also to the TEEB approach the “total value” of an ecosystem and its services has to include three types of value domains, namely the ecological (environmental), economic and socio-cultural value (Toman, 1998; de Groot, 2006). For example, hunting a game gives us food (health) and income but also cultural identity (as a hunter).

A special issue on valuation of ecosystem services, published in the journal Ecological Economics, discusses in detail the background, pro and contra of these three value approaches (de Groot et al., 2002; Farber et al., 2002; Limburg et al., 2002; Wilson and Howarth, 2002). One common problem in the valuation process is that information is often only available for some value domains and often in incompatible units.

5.2 Different valuation methods

Valuation can be conducted in many different ways (Pagiola et al., 2004). The MEA (2005) and TEEB (2010) for instance focus on assessing the value of changes in ecosystem services resulting from management decisions or other human actions. This type of valuation is most likely to be directly policy relevant. The change in value can be assessed by either explicitly estimating the change value or by comparing the current value with the future value resulted by the alternative management regime. At landscape scale the (land use) change value approach proved also very useful to present all the different stakeholder positions, and their linkages, in a rather objective and clear manner to support management discussions. Depending on the goal of the valuation
and on data availability, monetary as well as non-monetary valuation approaches are applicable (Gómez-Baggethun et al., 2010). In the further section we introduce some examples of valuation methods, which demonstrate important steps within the ecosystem service approach. As economic valuation has been implemented in many research studies and is also the main focus of the TEEB project, we provide also some important examples based on monetary valuation methods, although we do not place great emphasis on economic valuation within this review.

Economic valuation. Economic valuation has been often applied to assess the total value of services of a particular ecosystem or landscape at a given time (e.g. Adger et al., 1995; Pimentel et al., 1995; Costanza and Folke, 1997; Pimentel et al., 1997; Hein et al., 2006). This total economic value can be seen as an economic indicator, which provide as measure of gross national product or genuine savings policy-relevant information on the state of the economy (MEA, 2003). Costanza et al. (1997), for instance, whose publication presented an important milestone in the valuation process, attempted in their study to find the total economic value for a range of different ecosystem services at the global (biospheric) level. The current economic value of 17 ecosystem services for 16 biomes was estimated, based on published studies and a few original calculations. In general, they estimated unit area values for ecosystem services (in $ ha^{-1} yr^{-1}) and multiplied them by the total area of each biome. This approach has stimulated considerable debate and had not only to accept very sharp criticism from ecologists but also from economists (e.g. Opschoor, 1998; Turner et al., 1998; Bockstael et al., 2000; Xiaoli and Wie, 2009). Some of the core objections to Costanza’s model can be summarized as follows (Xiaoli and Wie, 2009): the model did not adequately incorporate several factors which impact on ecosystem services, such as regional differences, spatial heterogeneity and social development. Neither can values estimated at one scale be expanded by a convenient physical index of area, such as hectares, to another scale, nor can two separate value estimates, derived under different contexts, simply be added together (Bockstael et al., 2000). However it has to be stated, that the objective of this world wide study was not to present accurate values, but to show how valuable the natural world is (Pearce, 1998).

Since 1997, many studies were conducted to identify and quantify the value of ecosystem services. Whereas some of them based their results on Costanza et al. (1997) estimated values, others tried to modify Costanza’s model by including new approaches (e.g. Sutton and Costanza, 2002; Williams et al., 2003; Xiaoli and Wie, 2009).

To visualise that ecosystem services are spatially variable, and to identify key areas to be protected for the purpose of sustainable development, the “spatially explicit measure” represents a welcome method. It provides a mechanism for incorporating spatial context into ecosystem services evaluation (Chen et al., 2009). Explicit value transfer becomes a useful method assessing ecosystems or landscapes, if valuation data is absent or limited (Bateman et al., 2002; Troy and Wilson, 2006; Brenner et al., 2010). Values and other data from the original study site are transferred to the designated policy site (Loomis, 1992). Troy and Wilson (2006), for example, presented in their paper a decision support system framework, which was built upon the value transfer methodology. In each case study a unique typology of land cover, to which ecosystem service estimates were available from the literature, was developed. Standardized ecosystem service value coefficients were broken down by land cover class and service type for each case study. Therefore, scenario and historic change analyses according to ecosystem services could have been conducted. However, this approach also suffers from limitations, such as availability of data, strength of the data and comparability between the source data and policy context (Troy and Wilson, 2006). Whereas some ecosystem services are easily transferable because they are provided at large scales (e.g. the avoided greenhouse gas costs of carbon sequestration), other local scale services may have limited transferability (e.g. flood control values) (Farber et al., 2006).

Recognizing the limitations of value transfer, advanced research has focused more on spatially-explicit ecological and economic models, to explain the effect of human policies on ecosystem ser-
vices and subsequently on human welfare (Naidoo and Ricketts, 2006; Barbier et al., 2008; Polasky et al., 2008; Nelson et al., 2009). Such models show the spatial heterogeneity of service provision and supply a framework for regulatory analysis in the context of, for example risk assessment, non-point source pollution control, wetlands restoration and avalanche protection (Bockstael et al., 1995). The application of integrated modelling supported by GIS to simulate environmental change scenarios, especially climate change, has become a useful tool to help decision-makers in selecting sustainable and economically feasible development strategies (see Bockstael et al., 1995; Higgins et al., 2002; Boumans et al., 2008; Chen et al., 2009). For example, in the Alpine region a study integrated into a single GIS platform several ecosystem process models simulating the provision of ecosystem services simultaneously with economic valuation procedures, in order to visualize climate change effects (Gret-Regamey et al., 2008). However, modelling is costly of data and measurability requirements and therefore, studies often address relatively small spatial scales, at which it is achievable to develop ecological-economic models. In addition, most models usually focus only on a few ecosystem services and neglect the impact of biodiversity loss on combined ecosystem services. Only some authors tried to integrate the interactions between biodiversity and multiple ecosystem services in their studies (e.g. Metzger et al., 2006; Egoh et al., 2008; Nelson et al., 2009).

The recent TEEB project, mainly based on economic valuation, concentrates on assessing the consequences of changes resulting from alternative management options, rather than for attempting to estimate the total value of ecosystems (TEEB, 2010). Within this project best practice examples from around the world are presented. However, the review of case studies undertaken by TEEB shows that, in many instances, more efficient but less precise methods have been used, hence the results must be interpreted with appropriate care. Especially, in more complex situations involving multiple ecosystems and services, and/or different ethical or cultural convictions, monetary valuations seems to be less reliable or unsuitable. Nevertheless, monetary assessments are important for internalizing so-called externalities in economic accounting procedures and in policies that affect ecosystems, especially where the alternative assumption is that nature has zero (or infinite) value (de Groot, 2006).

Non-economic valuation. Besides the economic valuation, other ways to analyse the importance of ecosystem services including environmental and socio cultural assessments are available. Assessing ecological quality the ecosystem service approach is seen as an applicable tool for supporting an environmental decision making process (Paetzold et al., 2009). A specific Norwegian quality assessment, for example, evaluates current provision of services relative to their provision 100 years ago (Pereira et al., 2005). Paetzold et al. (2009) propose to evaluate the status of an ecosystem in terms of its sustainable provision of ecosystem services in relation to the societal expectations. Thereby for each ecosystem service the quality is defined by the ratio of its sustainable provision to the expected level of service delivery. Thus, systems that provide services in a satisfactory and sustainable way can therefore be regarded as being of better quality than those that do not. One major challenge is to select, or develop appropriate indicators that, for example, assess the sustainability aspect of a service or societal expectations (McMichael et al., 2005). In addition, it is difficult to obtain context-specific data on the provision and demand for many services (Chan et al., 2006).

According to Martin and Blossey (2009) an ecosystem service cannot have a discrete value, because it depends on stakeholder preference and changes with quality and time frame. They suggest the following framework considering the quality of ecosystem services, the weighting, and the issue of time scale: $TV = \int^t \sum_{i} x_i S_i + y_j S_j + \ldots + z_n S_n$, where TV is the total value of a system; S_1, S_2, \ldots, S_n are service functions; $1, 2, \ldots, n$ include measures of quality; x, y, \ldots, z are the respective weights of the service functions $1, 2, \ldots, n$; and t is the time frame considered. Habitat quality encompasses, for example, taxonomic diversity, suitability for rare species and

Living Reviews in Landscape Research

historic composition of the site. The weighting of services depends mainly on the background and preferences of decision makers.

In the UK the merits of a “habitat, service and place based perspective” to the assessment of ecosystem services are emphasized (Haines-Young and Potschin, 2008). The habitat perspective is based on the use of a matrix of habitats and their related services. Pressures, respectively impacts on the services are additionally identified to assess state and trends of each service associated with England’s ecosystems. Since there is no commonly agreed terminology of pressures it is difficult to make such an assessment consistent. A clear advantage of using habitats as framework for representing the output of ecosystem services is that as distinct ecological units they could be seen in terms of “bundles” of services that they can deliver. It is generally known that most ecosystems are multifunctional, as structures and processes within them are capable of generating a wide range of different services (de Groot, 2006). The quality assessment of each habitat depends on the condition of their services and on the weighting of the service related indicators and their pressures. Although the habitat approach sounds very promising it also has its shortcomings, especially considering the multifunctionality of ecosystems. In most cases the links and interlinks between services might be overlooked. For policy relevance often costs-benefit analyses are conducted, because the exploitation of services usually has both costs and benefits for the society.

A wide range of studies illustrate that multifunctional landscapes are not only ecologically more sustainable and socio-culturally preferable but frequently also economically more beneficial than landscapes that only provide few ecosystem services (Balmford et al., 2002; Turner et al., 2003; Naidoo and Adamowicz, 2005). Therefore, Willemen et al. (2010) propose to assess landscape values by referring to the total potential provision of goods and services at multifunctional locations. For each landscape the capacities of all landscape functions are normalized and summed up (see Gómez-Sal et al., 2003; Gimona and Van der Horst, 2007). Finally, a weighted value can be assigned to each landscape.

In the context of environmental assessment land use management decisions are often guided by some kind of transdisciplinary process, such as suggested by the concept ‘integrated planning assessment’ or more specifically the ‘quality of life capital’ approach (Potschin and Haines-Young, 2003; Haines-Young and Potschin, 2007). Thereby a “Leitbild” is used to describe what is viable in future, with regard to ecological sustainability and to the service preferences of society. Thus, the “Leitbild” concept can be applied as a reference system for service assessment in a given landscape.

To integrate in landscape planning not only environmental but also socio cultural values, great emphasis has to be placed on the expectations of inhabitants, tourists and the general public (Hunziker et al., 2008). By integrating different social groups into the valuation process both conflicting and compatible views about landscape change may arise. However, these insights are important for steering landscape development in a stakeholder-related sense and for recognising and reducing conflicts of interest (see Backhaus et al., 2007; Soliva et al., 2008). The underlying idea is that an integrated and multi-dimensional approach will be more likely to capture the full range of values, including those which may be context specific (local, regional, national, and global). Schama (1995), for instance, show how landscape perception is over-formed by cultural and national identity.

In general, case studies of socio-cultural assessment methods are lacking (Benayas et al., 2009). Christie et al. (2008) give an overview of non-economic techniques for assessing the importance of biodiversity to people in developing countries. Also, Pereira et al. (2005) provide some interesting non-monetary assessment methods.
6 Discussion

Although a lot of research effort regarding the investigation of ecosystem services has been done in the last years, it is still an innovative research field. Scientific models, frameworks and concepts for the evaluation of the benefits people derive from ecosystems have been provided. However, implementing the concept of ecosystem services into environmental planning and management at all levels of decision making still remains a big challenge and receives a lot of criticism.

6.1 Definitions and classifications – a challenge

In spite of the work done so far, there is still much discourse about definitions and classifications. According to Wallace (2008) a wide range of ways of evaluating trade-offs and synergies exist, but they need to be based on a coherent set of ecosystem services. However, maybe we should accept that no final classification can capture the myriad of ways in which ecosystems support human life and contribute to well-being. Since linked ecological–economic systems are complex and evolving, a ‘fit-for-purpose’ approach may be considered in creating clear classifications. Depending on the specific aim of applying a classification system the best suitable typology should be selected. Whereas some classification systems are more simple and thus well suited for educating a broad range of stakeholders (MEA, 2003), others are more complex focusing on the various spatial–temporal aspects of ecosystem services (Fisher et al., 2009). While accepting that no fundamental categories or completely unambiguous definitions exist for such complex ecosystems, and any systematisation is open to debate, it is still important to follow some basic guidelines when developing a ‘fit-for-purpose’ approach: (1) defining the overall aim/purpose of the assessment as well as the area of interest (2) be aware of the target addresser (3) be clear about the meaning of the core terms used (4) think about which services and their related indicators are important for the final assessment (5) avoid double counting and (6) the final typology should be comprehensible and balanced between different function/service groups.

6.2 Quantifying and mapping – their limitations

Land management decisions usually relate to spatially oriented issues. To receive support for adequate choices, information on the spatial distributions of landscape functions and services is needed. A visualisation of landscape functions should also illustrate the spatial heterogeneity in quality and quantity of services provision, which is due to differences in biophysical and socio-economic conditions at different scale levels (Wiggering et al., 2006; Meyer and Grabau, 2008). However, although recently a large number of studies have been published dealing with various assessment methods of landscape functions and services (e.g. Kienast et al., 2009; Brenner et al., 2010; Haines-Young et al., 2006; Willemen et al., 2008) information on quantity and quality of spatially explicit services for policy relevant decisions is often lacking (Pinto-Correia et al., 2006; Vejre et al., 2007). The information that does exist remains fragmented, not comparable from one place to another, highly technical and unsuitable for policy makers, or simply unavailable (Schmeller, 2008; Scholes et al., 2008).

Regarding the state-of-the-art, this paper shows, if the ecosystem service concept should be fully integrated into landscape planning issues, a better understanding of the interactions between land cover, use and function and methods to map and quantify land use and landscape function is needed (e.g. Verburg et al., 2009). In some cases the state of ecological knowledge and the data availability allow using some direct measures of services, while in other cases it is necessary to make use of proxies. However, finding the appropriate proxy still remains a challenge (Egoh et al., 2008; Willemen et al., 2008). By searching for appropriate indicators and proxies several issues have to be faced, especially the relationship between services and scales. Synthesizing and
visualising different landscape function and services would require a spatial reference framework (Helming et al., 2008), as different function groups usually occur at different scales (for instance, while provisioning functions are often restricted to a local scale, cultural or regulating functions usually operate at a broader scale). As the provision of landscape functions mainly depends both on the quantity and the spatial configuration of the landscape elements, special emphasis have to be put on defining thresholds indicating the change of function delivery when aggregating values within different spatial scales. For instance, a special function assessed on local level, cannot be assessed in the same way at landscape level. Therefore, to extrapolate function assessments to another level, special rules have to be defined. But, most of the existing assessments still tend to provide simply aggregated values for large regions, and thus data availability and disaggregation of spatial data are still one of the major limitations to the mapping of landscape functions and services.

6.3 Multifunctionality

As landscape functions do not equally interact with one another, multifunctional landscapes have different effects on service provision (Willemen et al., 2010). Both negative and positive effects on ecosystem service provision can be observed. Whereas some functions seem to gain by the presence of other functions (e.g. plant habitat to tourism), others are affected negatively by multifunctionality (e.g. tourism to plant habitat). Although some research has already been done on the assessment of landscape function interactions, there are still remaining knowledge gaps (Willemen et al., 2010). To analyse changes and trends in landscape function dynamics and to meet the challenges of trade-off analysis, more information on thresholds and optimum points is needed (Daugstad et al., 2006; Groot et al., 2007). In addition it would be very interesting to assess spatial and temporal scale effects on multifunctional areas (Hein et al., 2006).

6.4 Different disciplines – advantages or hindrances?

Taking all these aspects into account the assessment of the full range of ecosystem values including the ecological, the economic and the socio-cultural, seems to be impossible. According to Norgaard (2010) scientists from different research fields are used to face complex issues within different models and most of which do not fit within a stock-flow meta-framework underlying the concept of ecosystem services. We should also be aware that different disciplines often try to attain different goals, including ecological sustainability, social fairness and the traditional economic goal of efficiency. Additionally, ecological and social phenomena happen on multiple scales and over different time periods that also match with the scalars of different social institutions (Wilson et al., 1999; Folke et al., 2005). However, that the three disciplines economy, ecology and applied social studies have to cooperate and produce new relations will also lead to positive effects. Economists are increasingly aware of the importance to integrate a social point of view into their ecosystem service valuation. Because the distribution of ecosystem services directly affects many people, carefully designed discursive methods, which involve small groups of citizens in the valuation process, will help ensuring the achievement of social fairness (see Farber et al., 2002; Wilson and Howarth, 2002; Chee, 2004; Farber et al., 2006). Whereas in former decades it has been focused on either ecological or economic modelling, in recent years an integrated approach is rising, which allows directly addressing the functional value of ecosystem services by observing long-term, spatial, and dynamic linkages between ecological and economic systems (Eichner and Tschirhart, 2007). By means of cooperation of these three different approaches every part can profit from the others, leading to an integrated ecosystem valuation concept. Economics, for example, could probably better understand the complexity of ecosystems and their effects on human well-being. While, on the other side the dynamics of markets and their information flows such as money and prices as well as the
Trade-offs among ecosystem services are important to understand sustainable nature conservation. Thus, approaches to trade-off analysis can include multi-criteria (decision) analysis, cost-benefit analysis as well as cost effectiveness analysis. By including socio-cultural knowledge into the valuation concept, the analysis of human behaviour in its environment and human apperception of nature, will also help to enhance human welfare (Bockstael et al., 1995).

Encompassing all three disciplines into the valuation process of ecosystem services could lead to the development of a well-balanced support tool for sustainable management decisions. However, the high number of unresolved issues in quantifying and mapping of ecosystem services as well as the valuation process itself remains still as major hindrances to the implementation of the ecosystem service concept in environmental policy and management.

6.5 Valuation and the future generation

Besides the scientific discourse about the different valuation methods, the question of valuation regarding to future generation will still remain as one of the main challenges. We have to be aware that evaluation of ecosystem services can only be made within the current specific political and economic context. As predictions about future developments are still limited, we just be able to suspect which resources are important for future generations (Norgaard, 2010). Current values of ecosystem services should thus be critically analysed in concordance with global, social and political change indices (Nowotny et al., 2001). Whereas at the local and regional level the ecosystem service concept can act as a decision support tool for stakeholder to reach sustainable land use management, at global scale the valuation of ecosystem services can be seen as an alerting system and could encourage rethinking the global political systems to meet future challenges, like the climate and global change effects.

In conclusion, to meet all these challenges research effort needs to be conducted side by side to understand underlying relationships and to improve ecological as well as socio-economic understanding. Model-based research activities at local scale will take significant steps towards supplying policy makers with dependable and useable results.

As the ecosystem service research community is still very young compared to other research fields it could take some time to overcome the current barriers. However, on-going research studies, initiatives and projects, for instance the TEEB project, which are dealing with the ecosystem service approach raise hope, that the gaps get filled in the future and that the concept of ecosystem services can be integrated in environmental planning and management one time. The ecosystem service approach is an overarching concept that invites scientists from different disciplines to coordinate their research and guides their efforts towards outcomes more suitable for integration. To enhance the integration by coordinating collaborative efforts on ecosystem services at the global, national and local level a communication platform has been launched (http://www.es-partnership.org). Several international projects, for instance, the Global Earth Observation Biodiversity Observation Network GEOBON (Scholes et al., 2008) or the World Resources Institute Mainstreaming Ecosystem Services Initiative (http://www.wri.org/project/mainstreaming-ecosystem-services/tools) are developing tools and approaches to model, map and value particular ecosystem services based on abiotic, biotic and anthropogenic indicators, as well as knowledge of relationships between these factors.
7 Acknowledgements

This study was supported by the project TransEcoNet (Transnational Ecological Networks), which is implemented through the Central Europe Programme co financed by ERDF. We would also like to thank the project Bioserv (Biodiversity of ecosystem services as scientific foundation for the sustainable implementation of the Redesigned Biosphere Reserve “Neusiedler See”) funded by the Austrian Academy of Sciences. Our personal thanks go to Stefan Schindler and Christa Renetzeder for helpful comments and revising the language.
References

Bastian, O. and Schreiber, K.-F., eds. (1994), Analyse und ökologische Bewertung der Landschaft, Jena; Stuttgart (Gustav Fischer). (Cited on page 5.)

Bastian, O. and Schreiber, K.-F., eds. (1999), Analyse und ökologische Bewertung der Landschaft, Heidelberg; Berlin (Spektrum), 2nd edn. (Cited on pages 5, 9, 10, 11, and 13.)

Buchwald, K. and Engelhardt, W., eds. (1968), Handbuch für Landschaftspflege und Naturschutz, Bd. 4: Planung und Ausführung, München; Basel; Wien (Bayerischer Landwirtschaftsverlag). (Cited on page 5.)

Living Reviews in Landscape Research http://www.livingreviews.org/lrlr-2011-1
http://dx.doi.org/10.1371/journal.pbio.0040379. (Cited on pages 15 and 20.)

http://www.consecol.org/vol3/iss2/art14/. (Cited on pages 7, 10, 11, 12, and 13.)

Living Reviews in Landscape Research
http://www.livingreviews.org/lrlr-2011-1

